氢作为燃料在现有能源设备中直接来“烧”是否可行?
这个问题的答案是肯定的。没有什么根本障碍使氢不能在燃气轮机、加热器、锅炉或发电等其他能源应用中燃烧、氢与天然气的混合燃烧,或作为纯氢燃烧。
事实上,氢已经在意大利福西纳氢电站(100%氢气)、韩国大山石化厂(95%氢气)、中国武汉钢厂(60%氢气)等多个发电厂作为燃料使用。目前还有一些计划中的项目使用100%的氢气作为燃料,例如荷兰瓦滕法尔的Magnum工厂和犹他州的Vattenfall发电厂。
那么,在现有的能源系统中,以氢气为燃料有什么约束条件?
虽然氢燃烧提供了一个很有前途的储能和转换途径,但对于当今的天然气能源转换装置来说,这并不是一种“随时可用”燃料。燃料处理系统、阀门和管道以及燃烧室硬件需要进行更改,以解决污染物排放、可操作性和成本等问题。
我们还需要解决污染物排放问题。氢燃烧不会排放任何微粒或一氧化碳,因为它不含碳原子,这是氢作为燃料的另一个主要好处。然而,氢燃烧会产生氮氧化物(NOx)排放。本质上,当空气加热到高温时,空气中的N2和O2开始相互反应时,就会产生NOx。因此,与使用氢气有关的关键挑战是低NOx燃烧系统。
还有可操作性问题,即设备在不停机、不损坏或性能不合格的情况下可靠运行的能力。氢从几个方面影响可操作性,其中回火是将氢气用于天然气的系统中最严重问题,氢的火焰速度比天然气高一个数量级,因为火焰会向上游传播并严重损坏硬件。
此外,氢燃料燃烧产物的传热系数高于天然气。由于燃气轮机中的峰值温度是由到旋转涡轮的热传递控制的,这可能需要随着氢含量的增加而降低涡轮进口温度。虽然高氢燃料可以提高循环效率,但这会被降低涡轮进口温度来抵消。
总之,氢无疑是一种可接受的、非常清洁的燃料。目前存在氢气水平50%,与天然气共同使用的低NOx燃气轮机;也已经开发出了用纯氢操作的系统。未来的关键发展挑战是低NOx、燃料柔性系统,该系统可以在纯天然气到从纯氢气之间等多种燃料成分下轻松操作。下图概述了这些不同技术使用氢气的成熟度、研发需求和NOx合规性。
为什么说氢能发电厂将在能源转型中扮演重要角色?
如果有可再生能源,将其转化为氢气并重新通电,能源效率不到40%。但是,当我们将氢气用作长期储存和对各种可再生能源的补偿时,这才有意义。如果需要季节性储能——冬天夏天使用太阳能,秋天到夏天使用风能——氢气就可以完成这一过程。
大规模储氢也将有助于减少大风/晴天期间风力和太阳能发电的减少。绿氢可以增加我们可再生能源的吸纳,因为可以利用原本要被放弃的可再生能源制氢。因此,通过电解(利用电力将水分子分解成氢气和氧气),并将多余的能量储存为氢气,可以真正让电力系统大量扩展可再生能源。一旦能利用过剩的可再生能源电力,那么就可以将可再生能源实际利用率翻一番甚至更高。
挪威石油巨头Equinor和苏格兰公用事业公司SSE最近宣布了一项计划,计划在2030年前在英格兰东北部的凯德比建造一座全新的1.8吉瓦氢气发电站。该项目将可以由低碳的蓝色氢气提供动力,也可用于支持各种可再生能源,特别是是海上风电。
然而,在目前的条件下,使用清洁的氢气发电在经济上还是亏损的。目前绿色氢气的成本估计在2.50-6美元/千克之间,蓝色氢气的成本在1.50-4美元/千克之间。如果清洁的氢气在每千克2.35美元,以使其具有与化石气竞争的成本,需要对应二氧化碳价格为每吨200-250美元。我们距离这一碳价水平仍然很遥远,目前欧盟的碳价格约为每吨50欧元。
虽然,清洁氢气在2035年之前不会用于大规模电力生产,但会在运输和重工业等其他部门发挥效益。预计,在2035-2040年之间各国必须对电力部门进行深度脱碳,届时以氢能为基础的电气化将大规模发生。
氢气燃烧对现有直接加热的生产工艺和产品质量是否有影响?如何设计一个可以实现掺混比例可调并且可以精确控制空燃比的燃烧控制系统?
需要有对系统主要组成部件的特性的深入了解和深厚的设计和应用的实战经验积累。
相比于天然气,氢具有独特的应用挑战,包括更宽泛的可燃极限以及更少的点燃能量。“氢”洁能源,如何燃起来?
霍尼韦尔研发并测试了大量支持氢燃料的工业燃烧器产品组合,可为各类供热设备提供清洁能源。同样,霍尼韦尔的燃烧器管理控制系统、稳压阀和安全截止阀均已针对氢燃料应用进行了评估和验证,可有效保障氢气燃烧设备的安全启停和控制。